Calorimetric reconstruction (& PID) of ArgoNeuT events in LArSoft

Calorimetric reconstruction (I)

- After the 3D geometric reconstruction, determination of the energy release in LAr is performed by the further steps:
 - 1. account for the charge loss due to electro-negative impurities
 - 2. charge to energy conversion with correction for the quenching effect
 - ☐ The hit amplitude dQ (in units of ADC counts) is normalized for the track pitch length (i.e. the effective length of the portion of track exposed to a single wire, depending on the orientation of the track with respect to the direction of the wires in the plane) dQ/dx [ADC/cm]

Calorimetric reconstruction (II)

☐ An electronic calibration factor

is applied to convert from ADC count to charge expressed in number of electrons dQ/dx [e/cm]

- 1. To account for the charge loss along the drift due to electro-negative impurities the charge dQ/dx [e/cm] is multiplied by $e^{(t-t0)/\tau}$, where $(t-t_0)$ is the hit drift time and τ is the measured electron lifetime (measured run by run, ~750 μ s for ArgoNeuT @ NuMI ν mode).
- 2. The full calorimetric reconstruction is performed accounting for the quenching effect on the ionization charge, using Birks model, to convert dQ/dx [e/cm] to energy released per unit length dE/dx [MeV/cm]. From the parameterization of the recombination formula in ICARUS, NIM 523 (2004), 275:

Calorimetry package in LArSoft (T962/Calorimetry)

For each reconstructed track:

```
Run = 621 Event = 8190 #T962 Tracks = 2 #MINOS Tracks = 3
T962 Track ID 0 #SpacePoints = 56 #Clusters = 2 Theta = 0.272 Phi = 2.233
StartCosines: (-0.165 0.212 0.963) EndCosines: (-0.165 0.212 0.963)
T962 Track ID 1 #SpacePoints = 7 #Clusters = 2 Theta = 0.931 Phi = -0.389
StartCosines: (0.742 - 0.304 \ 0.597) EndCosines: (0.742 - 0.304 \ 0.597)
1 Matchable T962 tracks.
 Run 621 Event 8190 Match! T962 Track #0 and MINOS Track #1.00
 |-* ArgoNeuT track #0, escaping
                                                       Passing, entering, contained, escaping
 |-*
                        Track Length=33.15 cm
   |-* Collection View Calorimetric Reco
     |-* Hits=69
     Kinetic Energy deposited in LAr=59.66 MeV < dE/dx>, kinetic En. deposited in LAr
     1-\star \langle dE/dx \rangle = 2.03 \text{ MeV/cm}
 |-* ArgoNeuT track #1, contained
                        Track Length=6.54 cm
   |-* Collection View Calorimetric Reco
     1-* Hits=7
     1-* < dE/dx >= 7.48 \text{ MeV/cm}
     |-* Kinetic Energy deposited in LAr=57.37 MeV
     |-* <dE/dx> 5cm 8.26 MeV/cm
```

Histos of dE/dx, dE/dx vs. residual range, kinetic energy, Kinetic energy vs. total range (track length) for all reconstructed tracks

(Some new features recently added)

REAL DATA: PID and reconstruction of protons (evts with single tracks)

9 events like:

We are plenty of this kind of events!!

The origin of these events
need to be fully understood
(neutrons, NC events ...?)

REAL DATA: Protons - comparison with expectations

Measurement of dE/dx along the track, of the Kinetic energy deposited and of the track length

Calorimetric reconstruction of protons: very good agreement with expectations!

ArgoNeuT

MC DATA:

- Used to prove the reliability of the calorimetric reconstruction
- Simulation of events in LArSoft:
 - a) in LArVoxelReadout::DriftIonizationElectrons the energy deposited (from GEANT4) in a Voxel is converted in # of electrons taking accounting for:
 - 1. charge loss due to electro-negative impurities (lifetimecorrection)
 - 2. charge to energy conversion with correction for the quenching effect (recomb)

nElectrons = lifetimecorrection * energy *recomb* nElectrons_const

lifetime τ =750 μ s and Elec. Field=500 V/cm

 $A_{3t} = 0.800 \pm 0.003,$ $k_{3t} = 0.0486 \pm 0.0006 \text{ kV/cm} \frac{\text{g/cm}^2}{\text{MeV}}$ $\left(k_Q = \frac{k}{\ell}\right). \tag{9}$

Corresponding to $k_Q = 0.097 \pm 0.001$ (g/cm²)/MeV at 0.5 kV/cm, in good agreement with the value in Ref. [3].

recomb is calculated from the parameterization in ICARUS, NIM 523 (2004), 2

$$Q = A \frac{Q_0}{1 + k/\mathscr{E} dE/dx}$$

recomb = fRecombA/(1. + (energy/dx)*fRecombk); [MeV/cm]*[g/cm²/MeV]!

0) CCQE (GENIE) events (generated by Kinga)

- -The density of the Argon was not taken into account in the recombination formula.
- This has an important (non-linear) effect on the signal amplitudes of MC events.

1) **GeV Muons** - tracks parallel to the wire plane
raw **MC** data Coll. Plane ~ 22 ADC; <dQ/dx>=54 ADC/cm,
from calorim. Rec. <dE/dx>=1.5 MeV/cm!!

[to be compared with: raw Real data Coll. Plane ~ 26 ADC; <dQ/dx>=63 ADC/cm;
<dE/dx>=2.2 MeV/cm]

2) **185 MeV protons** (MC - generated by Kinga) – raw data:

185 MeV protons (MC - generated by Kinga) after reconstruction:

green points: MC p reconstructed
with the electronic
calibration factor
f_{cal}=12 ADC/fC (as
reported in larsoft
DetectorProperties in
Utilities)

black points: MC p reconstructed with f_{cal}=7.54 ADC/fC (as for real data)

Change to the recombination factor in LArSoft, to include the LAr density (Jan. 13 2012)

fRecombk = lgp->Recombk()/density;

1) **GeV Muons** - tracks parallel to the wire plane **– after change**raw **MC** data Coll. Plane ~ 26 ADC; <dQ/dx>=63 ADC/cm,
from calorim. Rec. <dE/dx>=2.2 MeV/cm in agreement with
real data

[to be compared with: raw Real data Coll. Plane ~ 26 ADC; <dQ/dx>=63 ADC/cm; <dE/dx>=2.2 MeV/cm]

2) **185 MeV protons** (MC - generated by Kinga) – raw data – **after change**

Proton reconstruction —after change:

Complete reconstruction of ArgoNeuT CCQE events (1)

Short track

Manual reconstruction of the short track from the signals on Coll and Ind (subtracting the contribution of the muon, 30 ADC on average)

Coll: 2 hits, 1 with very high deposited charge, the second with very small (1% of the first)

Reconstruction: track pitch length=0.47 cm, track length=0.47 cm (or slightly more)

Complete reconstruction of ArgoNeuT CCQE events (2)


```
Run = 621 Event = 8190 #T962 Tracks = 2 #MINOS Tracks = 3
T962 Track ID 0 #SpacePoints = 56 #Clusters = 2 Theta = 0.272 Phi = 2.233
StartCosines: (-0.165 0.212 0.963) EndCosines: (-0.165 0.212 0.963)
T962 Track ID 1 #SpacePoints = 7 #Clusters = 2 Theta = 0.931 Phi = -0.389
StartCosines: (0.742-0.304 0.597) EndCosines: (0.742-0.304 0.597)
1 Matchable T962 tracks.
MINOS TrkIndex 0: Q = -1 TrkVtx = (2.337 -1.273 2.133) StartCosines = (-0.503 0.154 0.850) E = 1.84 Erange = 1.74 Mom = 1.87 Chi2 = 11.30
MINOS TrkIndex 1: Q = -1 TrkVtx = (1.061 -0.010 0.054) StartCosines = (-0.162 0.224 0.961) E = 2.02 Erange = 1.45 Mom = 1.35 Chi2 = 12.65
MINOS TrkIndex 2: Q = -1 TrkVtx = (0.239 -1.601 0.054) StartCosines = (-0.160 0.141 0.977) E = 0.55 Erange = 2.38 Mom = 2.56 Chi2 = 0.58
0 1 0.11 1.35
Run 621 Event 8190 Match! T962 Track #0 and MINOS Track #1.00
I-* ArgoNeuT track #0, escaping
                  Track Length=33.15 cm
 I-* Collection View Calorimetric Reco
   I-* Hits=69
   I^{-*} < dE/dx > = 2.03 \text{ MeV/cm}
   |-* Kinetic Energy deposited in LAr=59.66 MeV
                                                                 Contained track:
```

|-* ArgoNeuT track #1, contained |-* Track Length=6.54 cm |-* Collection View Calorimetric Reco |-* Hits=7 |-* <dE/dx>=7.48 MeV/cm |-* Kinetic Energy deposited in LAr=57.37 MeV |-* <dE/dx>_5cm 8.26 MeV/cm

dE/dx vs. range not well matching proton expectations...
Not straight-line track!
Better reconstruction of track pitch length (hit by hit) needed

Calorimetric reconstruction

Summary

- The **missed density** in the recombination formula had relevant impact on MC simulated events!
- After the change: MC and real RAW data agree!!!
- •Calorimetric reconstruction works properly both for real and MC ArgoNeuT data (for straight-line like tracks)

To be done:

- Calorimetry code and electronic calibration factor f_{cal}=7.54 ADC/fC for ArgoNeuT to be committed.
- Track pitch length calculated Hit-by-Hit;
- -Test on MC neutrino events (ex. CCQE events Kinga);
- Calculate threshold for proton reconstruction (OP-Kinga);
- Calorimetry code "experiment independent". Test of calorimetric reconstruction of MicroBooNE MC events.

Backup

REAL DATA: Calorimetry summary

- •The calorimetric reconstruction seems to work properly (if the tracking is well done). A better calorimetric reconstruction for non straight tracks can be implemented.
- Complete kinematic reconstruction of some neutrino events
- Particle ID for contained track.
- •Mitch is setting up a tool to produce, together with the event display, the plot of dE/dx vs range for any contained track reconstructed
- •Some ideas to implement a fast Particle ID procedure based on <dE/dx> in the last few cm of track before stopping

•To be done: automatic Particle ID using a likelihood test